3. Bone Structure

Bone tissue (osseous tissue) differs greatly from other tissues in the body. Bone is hard and many of its functions depend on that characteristic hardness. Later discussions in this chapter will show that bone is also dynamic in that its shape adjusts to accommodate stresses. This section will examine the gross anatomy of bone first and then move on to its histology.

Gross Anatomy of Bones

A long bone has two main regions: the diaphysis and the epiphysis (see Figure 3.1). The diaphysis is the hollow, tubular shaft that runs between the proximal and distal ends of the bone. Inside the diaphysis is the medullary cavity, which is filled with yellow bone marrow in an adult. The outer walls of the diaphysis (cortex, cortical bone) are composed of dense and hard compact bone, a form of osseous tissue.

Anatomy of a Long Bone
Figure 3.1 – Anatomy of a Long Bone: A typical long bone showing gross anatomical features.

The wider section at each end of the bone is called the epiphysis (plural = epiphyses), which is filled internally with spongy bone, another type of osseous tissue. Red bone marrow fills the spaces between the spongy bone in some long bones. Each epiphysis meets the diaphysis at the metaphysis. During growth, the metaphysis contains the epiphyseal plate, the site of long bone elongation described later in the chapter. When the bone stops growing in early adulthood (approximately 18–21 years), the epiphyseal plate becomes an epiphyseal line seen in the figure.

Lining the inside of the bone adjacent to the medullary cavity is a layer of bone cells called the endosteum (endo- = “inside”; osteo- = “bone”). These bone cells (described later) cause the bone to grow, repair, and remodel throughout life. On the outside of bones there is another layer of cells that grow, repair and remodel bone as well. These cells are part of the outer double layered structure called the periosteum (peri– = “around” or “surrounding”). The cellular layer is adjacent to the cortical bone and is covered by an outer fibrous layer of dense irregular connective tissue (see Figure 3.4). The periosteum also contains blood vessels, nerves, and lymphatic vessels that nourish compact bone. Tendons and ligaments attach to bones at the periosteum. The periosteum covers the entire outer surface except where the epiphyses meet other bones to form joints (see Figure 3.2). In this region, the epiphyses are covered with articular cartilage, a thin layer of hyaline cartilage that reduces friction and acts as a shock absorber.

Periosteum and Endosteum
Figure 3.2 – Periosteum and Endosteum: The periosteum forms the outer surface of bone, and the endosteum lines the medullary cavity.

Flat bones, like those of the cranium, consist of a layer of diploë (spongy bone), covered on either side by a layer of compact bone (see Figure 3.3). The two layers of compact bone and the interior spongy bone work together to protect the internal organs. If the outer layer of a cranial bone fractures, the brain is still protected by the intact inner layer.

Anatomy of a Flat Bone
Figure 3.3 – Anatomy of a Flat Bone: This cross-section of a flat bone shows the spongy bone (diploë) covered on either side by a layer of compact bone.

Osseous Tissue: Bone Matrix and Cells

Bone Matrix

Osseous tissue is a connective tissue and like all connective tissues contains relatively few cells and large amounts of extracellular matrix. By mass, osseous tissue matrix consists of 1/3rd collagen fibers and 2/3rds calcium phosphate salt. The collagen provides a scaffolding surface for inorganic salt crystals to adhere (see Figure 3.4). These salt crystals form when calcium phosphate and calcium carbonate combine to create hydroxyapatite. Hydroxyapatite also incorporates other inorganic salts like magnesium hydroxide, fluoride, and sulfate as it crystallizes, or calcifies, on the collagen fibers. The hydroxyapatite crystals give bones their hardness and strength, while the collagen fibers give them a framework for calcification and gives the bone flexibility so that it can bend without being brittle. For example, if you removed all the organic matrix (collagen) from a bone, it would crumble and shatter readily. Conversely, if you remove all the inorganic matrix (minerals) from bone and leave the collagen, the bone becomes overly flexible and cannot bear weight.

Calcified collagen fibers
Figure 3.4: Calcified collagen fibers from bone (scanning electron micrograph, 10,000 X, By Sbertazzo – Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=20904735)

Bone Cells

Although bone cells compose less than 2% of the bone mass, they are crucial to the function of bones. Four types of cells are found within bone tissue: osteoblasts, osteocytes, osteogenic cells, and osteoclasts (see Figure 3.5).

Bone Cells
Figure 3.5 – Bone Cells: Four types of cells are found within bone tissue. Osteogenic cells are undifferentiated and develop into osteoblasts. Osteoblasts deposit bone matrix. When osteoblasts get trapped within the calcified matrix, they become osteocytes. Osteoclasts develop from a different cell lineage and act to resorb bone.
The osteoblast is the bone cell responsible for forming new bone and is found in the growing portions of bone, including the endosteum and the cellular layer of the periosteum. Osteoblasts, which do not divide, synthesize and secrete the collagen matrix and other proteins. As the secreted matrix surrounding the osteoblast calcifies, the osteoblast become trapped within it; as a result, it changes in structure and becomes an osteocyte, the primary cell of mature bone and the most common type of bone cell. Each osteocyte is located in a small cavity in the bone tissue called a lacuna (lacunae for plural). Osteocytes maintain the mineral concentration of the matrix via the secretion of enzymes. Like osteoblasts, osteocytes lack mitotic activity. They can communicate with each other and receive nutrients via long cytoplasmic processes that extend through canaliculi (singular = canaliculus), channels within the bone matrix. Osteocytes are connected to one another within the canaliculi via gap junctions.

If osteoblasts and osteocytes are incapable of mitosis, then how are they replenished when old ones die? The answer lies in the properties of a third category of bone cells—the osteogenic (osteoprogenitor) cell. These osteogenic cells are undifferentiated with high mitotic activity and they are the only bone cells that divide. Immature osteogenic cells are found in the cellular layer of the periosteum and the endosteum. They differentiate and develop into osteoblasts.

The dynamic nature of bone means that new tissue is constantly formed, and old, injured, or unnecessary bone is dissolved for repair or for calcium release. The cells responsible for bone resorption, or breakdown, are the osteoclasts. These multinucleated cells originate from monocytes and macrophages, two types of white blood cells, not from osteogenic cells. Osteoclasts are continually breaking down old bone while osteoblasts are continually forming new bone. The ongoing balance between osteoblasts and osteoclasts is responsible for the constant but subtle reshaping of bone. Table 2 reviews the bone cells, their functions, and locations.

Bone Cells (Table 2)
Cell type Function Location
Osteogenic cells Develop into osteoblasts Endosteum, cellular layer of the periosteum
Osteoblasts Bone formation Endosteum, cellular layer of the periosteum, growing portions of bone
Osteocytes Maintain mineral concentration of matrix Entrapped in matrix
Osteoclasts Bone resorption Endosteum, cellular layer of the periosteum, at sites of old, injured, or unneeded bone

Compact and Spongy Bone

Most bones contain compact and spongy osseous tissue, but their distribution and concentration vary based on the bone’s overall function. Although compact and spongy bone are made of the same matrix materials and cells, they are different in how they are organized. Compact bone is dense so that it can withstand compressive forces, while spongy bone (also called cancellous bone) has open spaces and is supportive, but also lightweight and can be readily remodeled to accommodate changing body needs.

Bone

Compact bone is the denser, stronger of the two types of osseous tissue (see Figure 3.6). It makes up the outer cortex of all bones and is in immediate contact with the periosteum. In long bones, as you move from the outer cortical compact bone to the inner medullary cavity, the bone transitions to spongy bone.

Diagram of Compact Bone
Figure 3.6 – Diagram of Compact Bone: (a) This cross-sectional view of compact bone shows several osteons, the basic structural unit of compact bone. (b) In this micrograph of the osteon, you can see the concentric lamellae around the central canals. LM × 40. (Micrograph provided by the Regents of University of Michigan Medical School © 2012)
Diagram of Spongy Bone
Figure 3.7: Osteon.

If you look at compact bone under the microscope, you will observe a highly organized arrangement of concentric circles that look like tree trunks. Each group of concentric circles (each “tree”) makes up the microscopic structural unit of compact bone called an osteon (this is also called a Haversian system). Each ring of the osteon is made of collagen and calcified matrix and is called a lamella (plural = lamellae). The collagen fibers of adjacent lamallae run at perpendicular angles to each other, allowing osteons to resist twisting forces in multiple directions (see Figure 3.4). Running down the center of each osteon is the central canal, or Haversian canal, which contains blood vessels, nerves, and lymphatic vessels. These vessels and nerves branch off at right angles through a perforating canal, also known as Volkmann’s canals, to extend to the periosteum and endosteum. The endosteum also lines each central canal, allowing osteons to be removed, remodeled and rebuilt over time.

The osteocytes are trapped within their lacuane, found at the borders of adjacent lamellae. As described earlier, canaliculi connect with the canaliculi of other lacunae and eventually with the central canal. This system allows nutrients to be transported to the osteocytes and wastes to be removed from them despite the impervious calcified matrix.

Spongy (Cancellous) Bone

Like compact bone, spongy bone, also known as cancellous bone, contains osteocytes housed in lacunae, but they are not arranged in concentric circles. Instead, the lacunae and osteocytes are found in a lattice-like network of matrix spikes called trabeculae (singular = trabecula) (see Figure 3.8). The trabeculae are covered by the endosteum, which can readily remodel them. The trabeculae may appear to be a random network, but each trabecula forms along lines of stress to direct forces out to the more solid compact bone providing strength to the bone. Spongy bone provides balance to the dense and heavy compact bone by making bones lighter so that muscles can move them more easily. In addition, the spaces in some spongy bones contain red bone marrow, protected by the trabeculae, where hematopoiesis occurs.

Diagram of Spongy Bone
Figure 3.8 – Diagram of Spongy Bone: Spongy bone is composed of trabeculae that contain the osteocytes. Red marrow fills the spaces in some bones.

Blood and Nerve Supply

The spongy bone and medullary cavity receive nourishment from arteries that pass through the compact bone. The arteries enter through the nutrient foramen (plural = foramina), small openings in the diaphysis (see Figure 3.9). The osteocytes in spongy bone are nourished by blood vessels of the periosteum that penetrate spongy bone and blood that circulates in the marrow cavities. As the blood passes through the marrow cavities, it is collected by veins, which then pass out of the bone through the foramina.

In addition to the blood vessels, nerves follow the same paths into the bone where they tend to concentrate in the more metabolically active regions of the bone. The nerves sense pain, and it appears the nerves also play roles in regulating blood supplies and in bone growth, hence their concentrations in metabolically active sites of the bone.

Diagram of Blood and Nerve Supply to Bone
Figure 3.9 – Diagram of Blood and Nerve Supply to Bone: Blood vessels and nerves enter the bone through the nutrient foramen.

Bone Markings

Define and list examples of bone markings

The surface features of bones vary considerably, depending on the function and location in the body. Table 3 describes the bone markings, which are illustrated in (see Figure 3.10). There are three general classes of bone markings: (1) articulations, (2) projections, and (3) holes. As the name implies, an articulation is where two bone surfaces come together (articulus = “joint”). These surfaces tend to conform to one another, such as one being rounded and the other cupped, to facilitate the function of the articulation. A projection is an area of a bone that projects above the surface of the bone. These are the attachment points for tendons and ligaments. In general, their size and shape is an indication of the forces exerted through the attachment to the bone. A hole is an opening or groove in the bone that allows blood vessels and nerves to enter the bone. As with the other markings, their size and shape reflect the size of the vessels and nerves that penetrate the bone at these points.

Bone Markings (Table 3)
Marking Description Example
Articulations Where two bones meet Knee joint
Head Prominent rounded surface Head of femur
Facet Flat surface Vertebrae
Condyle Rounded surface Occipital condyles
Projections Raised markings Spinous process of the vertebrae
Protuberance Protruding Chin
Process Prominence feature Transverse process of vertebra
Spine Sharp process Ischial spine
Tubercle Small, rounded process Tubercle of humerus
Tuberosity Rough surface Deltoid tuberosity
Line Slight, elongated ridge Temporal lines of the parietal bones
Crest Ridge Iliac crest
Holes Holes and depressions Foramen (holes through which blood vessels can pass through)
Fossa Elongated basin Mandibular fossa
Fovea Small pit Fovea capitis on the head of the femur
Sulcus Groove Sigmoid sulcus of the temporal bones
Canal Passage in bone Auditory canal
Fissure Slit through bone Auricular fissure
Foramen Hole through bone Foramen magnum in the occipital bone
Meatus Opening into canal External auditory meatus
Sinus Air-filled space in bone Nasal sinus
Bone Features
Figure 3.10 – Bone Features: The surface features of bones depend on their function, location, attachment of ligaments and tendons, or the penetration of blood vessels and nerves.